USE OF RELAXATION VISCOELASTIC MODEL IN
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The work applies the relaxation viscoelastic model proposed in [1-3] for calculations of high-
rate deformation of bars and plates and for refining the interpolation equations of Maxwel-
lian viscosity x (a magnitude inverse to the relaxation time 7 of the tangential stresses) by
means of them. These calculations were carried out to study the dependence of the dynamic
yield limit ¢, on the deformation rate ¢, The authors propose that the dependence O'g(e, T)
in € be trans%ormed, such that x = €(0, T) (here 0 is the intensity of the tangential stresses
and T is temperature) in order to construct interpolation equations for Maxwellian viscosity
X. A numerical analysis demonstrated that this equation leads to the correct qualitative
dependence in calculations of ¢ _(€). A correction factor is introduced into the equation y =
x (@, T) in order for the numerical calculations to quantitatively coincide with the experimen-
tal data in this work. '

Let us consider the uniaxial deformation of a bar of length L in the direction of the ox axis. The left
end of the bar is fastened at the point x; = 0, while the right end is deformed at a rate U (t), i.e., 2, =1 -+

i
gU (t)dt. The velocity of points of the bar is linearly distributed along the length of the bar in homogeneous
0

deformation, i.e.,
u(r,t)=U(t)z/z,(2),
from which we find that the deformation rate € has the form

fo _TO_ U

. 3 ‘
L+ g U (t)dt
In all cases that have been studied,
t

A JU@a
+ =<1, f.e., e~ U@L

Suppose the oy and oz axes are situated perpendicular to the direction of deformation of the bar. The equa-
tion of state of the bar material has the form [2]

EZE(C(, 5’ ¥ S)
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Here o, B and v are the logarithms of the relative elongations of the bar

along the ox, oy, and oz axes, respectively, and S and E are the entropy den-
J sity and energy per unit of mass. The stresses 0y, 0, and 0, along the
ox, oy, and oz axes are determined by the equation [1}]

(>3

oE OE oF
Gx;p‘%‘; o'v:p—a'ﬁ_; 02:9'73\,—’ (3)
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. while the temperature is determined by the equation
Fig. 7
7 9E (4)

where p is the density of the substance. We will assume, by letting the bar be thin, that

oy = 0, = 0. (5)

over the entire length of the bar. Since the problem is symmetric in the yz plane, while the substance is
isotropic,

p=y. (6)

All the magnitudes are functions solely of time in homogeneous deformation. Under this assumption, the
equation [1] describing the deformation of the bar takes the form
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{we must add Eqgs. (1)-(6) to these equations]. Here b is the velocity of propagation of transverse waves;

D=- [(a — “;*fil")z + (6 - “—J‘—:g—';_‘—’}z + (y — _a___?,)z] is the quadratic invariant of the Hencky tensor

deviator, and ¥ = x(0, T) is the magnitude of Maxwellian viscosity [3], where o = VY, log = 0,) + (00, )+
(GZ—O'X)Z] is the intensity of the tangential stresses. The magnitude b is calculated from Eq. (2) using the
equation

(= ] (\TD_Jos'
Whenever deformation of a thin plate situated in the xy plane and dilated (contracted) along the x axis
is considered, Egs. (5)-(7) must be replaced by the equation

x—— (?’fa+§—?)l’
| =7 D1
and the relation
0, =0
Figure 1 depicts curves for the dependence of the magnitude ¢ = — 0y for bar deformation on relative

elongation €& = AL/L for different deformation rates £, [The material was soft iron (a-phase) and 0 is in
kg/mm?]. Curves 1-6 correspond to €= 108, 10%, 10%, 10, 107!, and 1073 sec™!. The initial temperature T,
of the specimens was 300°K. The drop on curves 1 and 2 is due to heatmg of the specimen at high plastic
deformations. Figure 2 depicts temperature curves T (€) at £ = 10° sec ! and € = 10 sec™! (curves 2 and 1).
We may conclude from the form of the curves in Fig, 1 that the stress in the specimen is less some maxi-
mum values Ogqyp in the deformation process; it may be reasonably correlated with the yield limit ¢, which
can be experimentally observed. The dependence log 0., (log €) obtained by means of a numerical caleula-
tion (curve 1) and curve 4 for the dependence log Gg(log £) taken from a previous experiment [3] are given
in Fig, 3. Iron was the material of the spec1mens the initial temperature of the specimens was 300°K, the
magnitudes of the stresses were taken in kg/mm?, and that of € in sec™!. The nature of these curves allows
their qualitative coincidence to be judged..

We will introduce the correction factor 3pgbd/o (here p, and by are the density and velocity of propa-
gation of the transverse waves under normal conditions) in the formula for Maxwellian viscosity x(@,' ' T) [3]
in order the dependences log Og = f(log 8) and log 0y = f(log £) to quantitatively coincide. Then x(o, T) [3]
for metals (iron, aluminum, copper and lead) will be given by the equations

[

’ (T)—1
L= Yo ( P q)n exp (— pU (o, T)/RT);
0

T 2 —t
n(T) = [no (Fo— - n1) + nz} )
U(o,t) = i (n(T) F (T) = @ (o).
The minus sign is taken for lead and the plus for the other metals:

P(T)=(F, — FlT/B )T/0,;
D(0)=Dof ¢(0) — 1"¢*? *(0)+ @y;
§ (G) =y In !\Gq, pol‘o -+ g Ty
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TABLE 1

Xo,sec=110%Pe.g /cm? cﬂ,km/{ 9°,K

u, g /mole
Fe 0,0883 7,84 5,69 420 55,85
Al 0,0243 2,785 | 6,125 390 26,98
Cu 0,047 8,90 4,651 315 03,54
Pb 0,0740 11,34 2,151 83 207,21
TABLE 2
Fe Al Cu Pb
g 2,6.10¢ 1,06-10¢ 1,96 10 0,533-10*
o 06,0434 0,0462 04,0202 0,00804
n 1,545 2,57 0,955 0
ng 0,03 0,04 0,035 0,01
To 7,42.10—3 1,18.1072 7,15.1073 2,06-10—3
F1 1,89.10—3 4,77.4073 0,99.1073 0,377-1073
O 1,37-403 3,19.1072 0 2.6.10—8
Dy 14,15 53,1 0 10,45
@0 7,85 21,25 0 14,9
o —32,5 —59,7 0 —9,1

Here 1 is molecular weight, 8, is the Debye temperature, ¢  is the velocity of longitudinal waves under nor-
mal conditions, and R = 8+31.107 ergs/deg* mole. The values of the magnitudes py, cg, 8;, Xg, and p are
presented in Table 1 and the interpolation eonstants q, ngy, ny, ny, ¥y, Fy, 4, €4, ¢y, and ¢, are given in

Table 2.

The calculation for log Ocr =
log 64y = f(log €) and log Ty =

bi (log €) using Eq. (8) for x(v, T) demonstrates that the dependence

f(log S) quantitatively coincide. This curve 3 recalculated from curve 1

using the refined Eq. (8) is presented in Fig. 3 for iron. Only the curves in Figs. 1 and 2 were obtained

using these equations.

Results from calculations for Al, Cu, and Pb are presented in Figs. 4-6. Curves 1 and 2 of the fig-

ures correspond to curves 3 and 4 of Fig. 3, i.e., the dependences log 0y = f (log £) and log Og
respectively (0 is in kg/mm? and € is in sec”h).

= f(log¢),

Deformation curves calculated for plates are of the same qualitative form as for bars, differing from
them only insignificantly. As a result of numerical ealculations we were able to establish that the mag-
nitudes ., computed for the bar and caleulated for a plate differ by about 10% in the range of deformation

rates up to € = 10! sec™

of an iron plate at T = 300°K (curve 2).

It is of interest to calculate one deformation cyele of a bar with periodic rate U (t).

. Figure 3 depicts the dependence log 0y =

f(log e) caleulated for the deformation

Figure 7 depicts

the curve for the dependence of longitudinal force F acting on an iron bar with initial cross section 1 cm?
on the relative elongation €, Deformation occurred at a rate € = 10 sec™!, The form of the curve indicates
the presence of a "Bauschinger-type" effect and o, differs for different cycles.
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