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The work applies the re laxat ion viscoelast ic  model proposed in [1-3] for calculations of high- 
ra te  deformation of ba r s  and plates and for refining the interpolation equations of Maxwel- 
lian viscosi ty  • (a magnitude inverse to the relaxat ion t ime r of the tangential s t resses)  by 
means of them. These calculations were  ca r r i ed  out to study the dependence of the dynamic 
yield l imit ag  on the deformation ra te  s The authors  propose that the dependence ag(e, T) 
in ~ be t ransformed,  such that ~ = e (a, T) (here ~ is the intensity of the tangential s t r e s s e s  
and T is temperature)  in order  to cons t ruc t  interpolation equations for Maxwellian viscosi ty  
X. A numerica l  analysis  demonstra ted that this equation leads to the co r r ec t  qualitative 

in calculations of ag(~). A cor rec t ion  factor is introduced into the equation X = dependence 
X (a, T) in order  for the numerical  calculat ions to quantitatively coincide with the exper imen-  
tal data in this work. 

Let us consider  the uniaxial deformation of a bar  of length L in the direct ion of the ox axis. The left 
end of the bar  is fastened at the point x0 = 0, while the r ight  end is deformed at a ra te  U (t), i.e., x, = L + 

t 

f U  (t) dt. The velocity of points of the bar  is l inearly distr ibuted along the length of the bar  in homogeneous 
0 
deformation, i.e., 

~t(x,t) = U(t)x/x z(t), 

f rom which we find that the deformation ra te  e has the form 

�9 0~  U (t) u (t)  

L zc [. U (t) dt 
0 

(1) 

In all cases  that have been studied, 

t 
AL ! U (t) dt 
%-- = L << 1, {.e., e ~ U (t)/L. 

Suppose the oy and oz axes a re  situated perpendicular  to the direct ion of deformation of the bar .  The equa- 
tion of state of the bar  mater ia l  has the form [ 2 ]  

E = E ( a ,  8, 37, S). 
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Here c~, fl and 7 are  the logari thms of the relat ive elongations of the bar 
along the ox, oy, and oz axes,  respect ively ,  and S and E are  the entropy den- 
sity and energy per unit of mass  The s t r e s se s  ax, a . ,  and a z along the �9 y 

ox, oy, and oz axes a re  determined by the equation [1] 

OE OE 8E o==p-~v; o,,=p.-j~-; o,=O-~--. (3) 

while the tempera ture  is determined by the equation 

T -  oE (4) 
8 S  ' 

where p is the density of the substance. We will assume,  by letting the bar be thin, that 

~ ---- o, ~ O. (5) 

over the entire length of the bar.  Since the problem is symmetr ic  in the yz plane, while the substance is 
isotropic,  

P--:v (6) 

All the magnitudes are  functions solely of time in homogeneous deformation. Under this assumption,  the 
equation [1] describing the deformation of the bar  takes the form 
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I - ~ ,  3 (7) 
dS 4b ~ ,-, 

"-97- = - 'P  - L ' z  

[we m u s t  add Eqs .  (1)-(6) to these  equat ions] .  H e r e  b is the ve loc i ty  of p ropaga t ion  of  t r a n s v e r s e  waves ;  

D = --if- [(t, - -  ~ , v , . ,  +v}2j is the quadra t i c  invar ian t  of the Hencky  t enso r  

v i s c o s i t y  [3], whe re  ~ = vii/2 [(a x -  ay) 2 + (a. -r + dev ia to r ,  and X = • (a, T) is the magni tude  of Maxwell ian y 
' ( ~ z - a x  )2] is the in tens i ty  of the tangent ia l  s t r e s s e s .  The magni tude  b is ca lcu la ted  f r o m  Eq. (2) us ing  the 
equat ion 

,-(ae i b = I i-Yff,'os" 

Whenever  de fo rma t ion  of a thin plate s i tua ted  in the xy plane and di la ted  (contrac ted)  a long the x axis  
is cons ide red ,  Eqs .  (5)-(7) m u s t  be r e p l a c e d  by the equat ion 

-.-~ = e - - (  3 , '  

/_ 2_ ~247176247 =-(.,,. z, 

and the r e l a t i o n  

g ,=0 .  

F igu re  1 depic ts  c u r v e s  for  the dependence  of  the magni tude  r = - cr x for  bar  de fo rma t ion  on r e l a t i v e  
e longat ion ~ = A L / L  for  d i f ferent  de fo rma t ion  r a t e s  g. [The m a t e r i a l  was  soft  i ron ( a -phase )  and a is in 
kg /mm2] .  Curves  1-6 c o r r e s p o n d  to r  106, 105, 103, 10, 10 -1, and 10 -3 sec -1. The init ial  t e m p e r a t u r e  T O 
of the s p e c i m e n s  was  300*K. The drop on c u r v e s  1 and 2 is due to hea t ing  of  the spec imen  at  high plas t ic  
de fo rma t ions .  F igu re  2 depic ts  t e m p e r a t u r e  c u r v e s  T (~) at  e = 106 sec  -1 and ~ = 10 sec  -1 ( cu rves  2 and 1). 
We may  conclude  f r o m  the f o r m  of the c u r v e s  in Fig.  1 that  the s t r e s s  in the s p e c i m e n  is l e s s  s o m e  m a x i -  
m u m  values  r in the de fo rma t ion  p r o c e s s ;  it may  be r e a s o n a b l y  c o r r e l a t e d  with the y ie ld  l imi t  ag ,  which 
can  be e x p e r i m e n t a l l y  obse rved .  The dependence  log a c r  (log ~) obtained by means  of a n u m e r i c a l  c a l c u l a -  
t ion (curve  1) and c u r v e  4 for  the dependence  log a g ( l o g  ~) taken f r o m  a p rev ious  e x p e r i m e n t  [3] a r e  given 
in Fig.  3. I ron  was  the m a t e r i a l  of  the s p e c i m e n s ,  the init ial  t e m p e r a t u r e  of the s p e c i m e n s  was  300*K, the 
magn i tudes  of  the s t r e s s e s  w e r e  taken in k g f m m  2, and that  of  ~ in sec -1. The na tu re  of these  c u r v e s  a l lows  
thei r  qual i ta t ive  co inc idence  to be j udge d .  

We will in t roduce  the c o r r e c t i o n  f ac to r  3P0b~/a (here  P0 and b0 a r e  the dens i ty  and ve loc i ty  o f  p r o p a -  
gat ion of the t r a n s v e r s e  waves  under  n o r m a l  condit ions)  in the fo rmu la  for  Maxwel l ian v i s c o s i t y  X(a, 'T)  [3] 
in o r d e r  the dependences  log  ag  = f ( l o g  ~) and log a c r  = f ( l o g  ~) to quant i ta t ive ly  coinc ide .  Then  X(a,  T) [3] 
for  me ta l s  (iron, a luminum,  copper ,  and lead) will  be given by the equat ions  

f {y \n(T)--i 
)~ = Zo [ P ~ o  q) exp ( -  . g  (o, r ) /Rr ) ;  

l n~] ; = - '  

U (a, t) = c 2 (n (T) F (T) • q) (a)). 

(8) 

The minus  sign is taken for  lead and the plus  for  the o ther  me ta l s :  

F ( T )  = (Fo - -  F1 TlOo) T.'Oo; 
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TABLE 1 

t Xo,~ec-i 10,' Po,g/cma co,kin/ O',K l~t,g/mole 

Fe ! 0,0683 
A1 0,0243 
Cu 0,0417 
Pb 0,0740 

7,84 5,694 
2,785 6,i25 
s,9o ~,65i 

11,34 2,t5t 

420 / 55,85 
390 26,98 
3t5 63,54 
88 207,2i 

TABLE 2 

Fe AI Cu Pb 

q 

nl  

n2 

F0 
Fl 
~P0 
@1 
~0 
91 

2,6.10 ~ 
0,043~ 
1,545 
0,03 
7,i2. l0 -3 
t,89. t0 - 3  
1,37' t0 -3 
14,15 
7,85 
--32,5 

t,06- t0 a 
0,0462 
2,57 
0,0t 
t,18.10 -2 
4,77.10 -3 
3,t9.t0 -3 
53,i 
21,25 
--59,7 

i,96. l0 * 
0,0202 
0,955 
0,035 
7,t5. i0 -S 
0,99.10 -3 
0 
0 
0 
0 

0,535- t0 i 
0,00804 
0 
0,01 
2,00. J O - ~  
0,377.10--5 
2,6. I0 -3 

t0,t5 
14,9 
--9,1 

Here  ~ is molecular  weight, 00 is the Debye temperature ,  c 0 is the velocity of longitudinal waves under nor-  
mal conditions, and R = 8 . 3 1 . 1 0  r e r g s / d e g ,  mole. The values of the magnitudes P0, co, 00, X0, and ~ a re  
presented in Table 1 and the interpolation constants q, no, nl, n~, F0, FI,  @0, @~, ~P0, and r are  given in 
Table 2. 

The calculation for log ~cr = f{ log  s using Eq. (85 for X(a, T5 demonst ra tes  that the dependence 
log ac r  = f ( l o g  ~5 and log ag =f  (log s quantitatively coincide. Th i s  curve 3 recalcula ted f rom curve 1 
using the refined Eq. (85 is presented in Fig. 3 for iron. Only the curves  in Figs.  1 and 2 were obtained 
using these equations. 

Results  f rom calculations for A1, Cu, and Pb are  presented in Figs.  4-6. Curves 1 and 2 of the fig- 
ures  cor respond  to curves  3 and 4 of Fig. 3, i.e., the dependences log ffcr = f ( l o g  s and log gg = f ( l o g e ) ,  
respec t ive ly  (or is in k g / m m  ~ and ~ is in sec-15. 

Deformation curves  calculated for plates a re  of the same qualitative form as for bars ,  differing f rom 
them only insignificantly. As a resul t  of numerical  calculations we were able to establish that the mag-  
nitudes a c r  computed for the bar  and calculated for a plate differ by about 10% in the range of deformation 
ra tes  up to e = 104 sec -1. Figure 3 depicts the dependence log a c t  = f ( l o g  e) calculated for the deformation 
of an iron plate at T O = 300~ (curve 2). 

It is of interest  to calculate one deformation cycle of a bar with periodic ra te  U (t). Figure 7 depicts 
the curve for the dependence of longitudinal force F acting on an iron bar with initial c ross  section 1 cm 2 
on the relat ive elongation e. Deformat ion  occur red  at a ra te  e = 10 sec - l .  The form of the curve indicates 
the presence of a "Bauschinger- type"  effect and qcr  differs for different cycles .  
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